SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 1

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

A New Timing Error Cost Function
for Binary Time Series Prediction

Frangois Rivest and Richard Kohar

Abstract—The ability to make predictions is central to the
artificial intelligence problem. While machine learning algorithms
have difficulty in learning to predict events with hundreds of time
step dependencies, animals can learn event timing within tens
of trials across a broad spectrum of time scales. This suggests
strongly a need for new perspectives on the forecasting problem.
This paper focuses on binary time series that can be predicted
within some temporal precision. We demonstrate that the sum
of squared errors (SSE) calculated at every time step is not
appropriate for this problem. Next, we look at the advantages
and shortcomings of using a dynamic time-warping (DTW) cost
function. Then, we propose the squared timing error (STE) that
uses DTW on the event space and applies SSE on the timing
error instead of at each time step. We evaluate all three cost
functions on different types of timing errors, such as phase-
shift, warping, and missing events, on synthetic and real-world
binary time series (heartbeats, finance, and music). The results
show that STE provides more information about timing error, is
differentiable, and can be computed on-line efficiently. Finally,
we devise a gradient descent algorithm for STE on a simplified
recurrent neural network. We then compare the performance of
the STE-based algorithm to SSE and logit-based gradient descent
algorithms on the same network architecture. The results on real-
world binary time series show that the STE algorithm generally
outperforms all the other cost functions considered.

Index Terms—Squared timing error, Time series forecasting,
Dynamic time warping, Recurrent neural network

I. INTRODUCTION

HE ability to make predictions is central to the artificial
intelligence problem [1]. We make predictions using
evidence collected in our daily lives to help us make decisions
about our schedules, our finances, and even in our simplest
tasks. For example, crossing the street safely requires some
form of time estimate for us to cross the street and avoid being
struck by a car. The key to solve our prediction problems,
even in the simple task of crossing the street, are timing
mechanisms. They help us to predict the timing of upcoming
events needed to synchronize strategies, decisions, and actions
within our environment. Robots are also in need of such timing
learning ability [2]. However, turning our continuous stream of
observations into useful predictions that can be used to make
or adjust our decisions in real time is a notoriously difficult
computational problem [1].
Predicting the future can be seen as a time series forecasting
problem. In this paradigm, one usually attempts to predict the

F. Rivest and R. Kohar are with the Department of Mathematics
and Computer Science, Royal Military College of Canada, Kingston,
ON, K7K 4B4, Canada. E-mail: francois.rivest@{mail.mcgill.ca, rmc.ca},
richard @math.kohar.ca.

F. Rivest is also with the Centre for Neuroscience Studies, Queen’s
University, Kingston, ON, Canada.

upcoming observations for one or a few time steps ahead.
The vast majority of machine learning algorithms try to
minimize a cost function, such as the sum squared error
or negative likelihood, using a gradient-based approach. The
sum squared error is extended to time series forecasting by
summing the squared error at each fixed-size time step over
the entire sequence and making a gradient descent over that
sum. However, the basic sum squared error cost may not
perform well for many tasks since it only considers amplitude
error without adequately taking timing error into account [3].
This is particularly important in time series recognition and
clustering, where one would rather have a measure that is
almost invariant under time shifting or warping [4]. The most
common solution to this problem is dynamic time warping.
Initially developed in speech recognition [3], dynamic time
warping works by finding a time-warping function that once
applied, would minimize the sum of squared error (or some
other cost function) between two time series. While it has the
advantage of being more time-shift and time-warp invariant,
this method is computationally expensive (O(T?f?), where
T is the time window length in time units and f is the
sampling frequency). Moreover, it does not provide a gradient
to optimize the predictions of a forecasting system. Thus,
dynamic time warping is more appealing to pattern recognition
than to time series forecasting. Much work has been done on
similarity measures in time series recognition and knowledge
discovery (e.g., [4], [5], [6], [7]), but they usually cannot use
the temporal error directly in improving their predictions and
often cannot be trained on-line in real-time.

Computationally, the forecasting problem becomes a matter
of determining which subsequence of some finite past should
be used to make a prediction. Even if we limit ourselves
to a single stream of binary inputs, the number of possible
subsequences over the past n time steps that need to be
observed to make an appropriate prediction for the next time
step only is on the powerset of n, which is superexponential.
For example, with state of the art artificial neural networks,
learning a simple association of a few time steps apart can
take thousands of trials [8], and at a hundred time steps apart,
it can take millions of trials and success is not guaranteed
[9]. Moreover, increasing the sampling frequency escalates
the problem’s difficulty as much as increasing the interval
length itself. Without any prior knowledge about the sequence
structure, using artificial neural networks to predict a binary
event is likely to be NP-complete [10]. This means that they
may need a number of trials that is exponential with respect
to the temporal distance, in time steps, between the necessary
inputs and the corresponding prediction.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 2

Despite those facts, learning timing in nature seems quite
easy. Animals can learn stimulus-reward association in a few
tens or hundreds of trials for intervals ranging from hundreds
of milliseconds to many minutes [11]. In fact, as long as
the ratio between the interstimulus interval (the time interval
between the stimulus announcing the reward and the reward
itself) and the intertrial interval (the time interval between two
conditioning trials) is constant, the required number of trials
(or paired observations) to conditioning is constant (O(1))
[11]. Moreover, when a conditioned response appears, precise
timing is already learned [12], [13]! Thus, evolution has found
ways for animals to learn timing in a constant number of trials,
independent of the time scale; this suggests that a different
computational approach to the forecasting problem can be
taken. Recent results using new learning rules focusing on
timing, without minimizing the sum of squared error at every
time step, have shown significant improvement in learning
speed, approaching animal performance [14], [15], [16].

In this paper, we look at two standard cost functions and
develop a new one with this perspective: trying to minimize
the timing error for every event (learning when) rather than the
output error for every time step (learning what). Our focus
is on cost functions that can be used by on-line real-time
learning systems to predict the timing of binary events or event
onsets. First, we outline the failures of the sum squared error
(SSE) as a cost function for learning to predict event timings,
and then list the desirable properties that a good timing error
cost function should have for this problem. Next, we evaluate
how dynamic time warping (DTW) could be adapted for this
purpose, reviewing its advantages and disadvantages. We then
propose the squared timing errors (STE) as a new cost function
and show how it implements the desired properties. The three
cost functions—SSE, DTW, and STE—are then evaluated on
a set of synthetic and real-world binary time series (heartbeats,
stock prices, and music pieces) by injecting an increasing
amount of temporal noise (such as time-shift, time-warp, or
missing/extra events) to the binary time series. The results
demonstrate that STE reports timing error accurately, more
than SSE and DTW. STE seems, therefore, the best of the
three cost functions having all the desired properties to learn
event timing on-line. Finally, we devise an STE gradient
descent algorithm for a simplified recurrent neural network and
compare it to SSE and logit gradient descent on learning to
predict the above real-world binary time series with the same
network architecture. The STE gradient descent algorithm
generally outperforms the other two algorithms under all cost
function performance measures.

II. BINARY TIME SERIES ERROR
A. Sum Squared Error

The sum squared error (SSE) is one of the most widely used
cost functions in machine learning and time series forecasting
today. Many algorithms define a model (or forecaster) by
minimizing this cost, or a related one, using a gradient descent
algorithm or a similar optimization technique. There have been
some successful results in training complex neural networks on
difficult tasks with long-term relationships using this approach

x1 |]

YT At =65
Y/T At =18 ﬂ
0 6 12 18 24 !

Fig. 1. Example showing that SSE does not provide information about the
magnitude of the timing error. The three signals, X, Y and Y”, only differ by
their timing. While Y is three times closer to X than Y in terms of timing,
Y and Y’ have the same SSE with X (SSE(X,Y) = SSE(X,Y”’) = 2).

(for example, [9]). Yet, these artificial neural networks were
unable to learn to predict even a short time interval in a
reasonable number of training trials. For example, learning
when a reward will occur under fixed-delay conditioning of a
few time steps requires thousands of trials for those networks
[8], while animals only require a few dozen trials to learn
the same time interval [11]! One could argue that the error
function does not cause the difficulty in learning for neural
networks, but by the neural network recurrent architecture
itself [17]. Nonetheless, we argue that the SSE itself overlooks
a critical error component—the timing error.

Let X = (x1,22,...,21) and Y = (y1,%2,...,yr) be
two binary time series with L data points each, such that
x;,y; € {0,1}, and where the time interval between any two
consecutive data points (e.g., x; and x;41) is constant. Then
the sum of squared errors between the two series is

L
SSE(X,Y) = > (zi —u:)*. (1)
i=1

It is easy to show that some information is not directly
accessible through the SSE, namely the timing error. For
example, in Fig. 1, the timing difference between signals
X and Y’ is three times larger than between signals X
and Y. Yet, both SSEs are exactly the same (SSE(X,Y) =
SSE(X,Y”) = 2).

To learn to predict an event coming a fixed number n of
time steps after a given input (or stimulus), most forecasters
would use a set of D > n delay-lines to maintain instant
access to a long enough history of recent past observations.
These forecasters are limited to predictions that can be defined
as a weighted sum or function of these D recent observations
only. In the absence of sufficient delay-lines, a recurrent neural
network could try to link the events together (the predictive
input, the event itself, and its current prediction) through
its architecture and the SSE gradient, but this is difficult
to achieve [3], [8], [17]. A cost function using the timing
error could directly provide the learner with some information
about both, the relationships between an event (in X) and its
prediction (in Y'), and the size of the timing error.

B. Desirable Timing Cost Function Properties

A good timing error cost function should be reasonably:

1) monotonically increasing with phase shift (more phase
shift should induce more error);

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 3

2) monotonically increasing with warping factor (more
time compression or expansion, should induce more
error); and

3) monotonically increasing with event rates difference
(more missing or extra events, should induce more
error).

For a good automatic forecasting system to learn on-line,
such as for adaptive control of robots or in reinforcement
learning, the following properties would be useful:

4) differentiability (to allow some form of cost minimiza-

tion through gradient descent); and

5) on-line and real-time computability (to learn from every
single event as they occur).

The SSE is clearly not proportional to amount of phase-
shift or warping (Properties 1-2), as shown in Fig. 1. It does,
however, increase as the number of events between the two
sequences differs (Property 3). It can always be computed on-
line (Property 5) and it can generate a gradient (Property 4)
for a differentiable system that produces an output at every
time step. But the gradient of the SSE has little timing error
information and is therefore of limited use for our problem
(31, [17].

C. Dynamic Time Warping

Dynamic time warping (DTW) is an approach that was
first developed in speech recognition [3]. The idea was to
eliminate the timing differences between two speech signals by
stretching or warping their time axis to obtain the maximum
coincidence. This can be computed efficiently using dynamic
programming to find the warping path that minimizes the
residual distance between the two speech sequences.

For our problem, we consider an observed binary time series
X over a given time window of length L and the corresponding
prediction binary time series Y over same the time window.
We can then create an L-by-L matrix or grid W, where each
grid point p = (4, j) corresponds to a pair (x;,y;). A warping
path P = (p1,p2,...,pK) iS @ monotonic sequence of grid
points traversing the grid such that p; = (1,1) and px =
(L, L). The dynamic time warping problem is to find the path
P that minimizes the cost of matching the two signals X and
Y using some cost function J(-,) (such as the SSE) for each
point py, on the path. This mathematical programming problem
is

K
DTW(X,Y) = min {Z 5(1%)} 7
k=1

which can be solved in O(L?). Note that in contrast to the
basic SSE, the two signals can be of different lengths.

In short, dynamic time warping attempts to stretch or warp
subsections of the signal to minimize SSE between the two
time-realigned signals. But, this only gives a measure of the
difference in amplitude between a signal and an optimally
warped version of a second signal. It does not provide a
measure of the timing error or of the amount of warping done.
However, this can be solved by using the path length (i.e.,
the amount of warping done), alone, or in addition to the
remaining SSE, to get a combined measure of timing error
and signal amplitude error.

1) Dynamic Time Warping and Timing Error: One can
adapt the dynamic time warping method for binary streams
of instantaneous events to find the realignment that requires
the fewest unaligned events and the minimal amount of
time shifting or warping. The optimal realignment of events
minimizing the number m of missed events and the sum of
all K — L necessary time compression or expansion steps is

K
DTW(X.Y) = min {Z(a@k) " w(pkl,pk»} e
k=1

where w(-,-) is the cost of moving in a particular direction
in the grid, and 4(-,) the cost of not matching an event. Let
moving upward or rightward (warping) cost 1 and moving
diagonally (no warping) cost 0. Then the matrix W (i, j) of
the minimal warping cost from (1,1) to (¢, 7) is

if we compress time;
W(Z,] — 1) +1+ (5($i,yj),

W(¢,7) = min 3
(@7) if we stretch time; ©)
otherwise,
where
0, if z; = y; (matching events);
Sany) =9, Y s @
L, if x; # y; (unmatching events)
with W (i,0) = W(0,j) = oo and W(0,0) = 0. Thus

DTW(X,Y) = W(L,L) = minp{2(K — L) +mL}."' Eq. (3)
is a variation on the Levenshtein [18] edit distance. The
high penalty L in Eq. (4) for not matching events forces the
algorithm to prefer matching every possible event over any
possible amount of warping. An example is shown in Fig. 2.

Everything else constant, shifting any number of events by
some small enough amount such that the order of the events
remains the same, will induce a proportional amount of error
for realigning the events together. The same rule applies to
a global shift of the time axis as long as all events are kept
within the visible window. Similarly, any warping (without any
changes in the number of events by collapsing events together),
will induce an amount of error proportional to the total amount
of phase-shifting required to realign them. Finally, if event
times are kept constant, then the cost is proportional to the
number of missing or extra events. Therefore, DTW as defined
by Eqgs. (2)—(4) satisfies Properties 1-3 for a substantial range
of timing errors.

DTW’s issues are with Properties 4 and 5. Because of
the min operator and its {+1,0} warping costs of Eq. (3),
DTW is not differentiable. Recent work has attempted to make
it differentiable [19], but the derivative with respect to the
prediction series does not include the temporal error, only the
amplitude error given appropriate warping and shifting has
been applied. Moreover, both signals need to be fully observed

'Note that DTW(X,Y) = minp{2(K — L) +mL} only if the sampling
rate is sufficient to ensure that each event is separated by a non-event sample.
Otherwise, consecutive events will join together and each additional event
will pay only +1 compression/stretching penalty.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 4

x]

0 10 35

J
90 400
300
200
20t —
100
0y

Fig. 2. Example of a dynamic time warping path between two signals X
and Y. The first signal X has three events (i € {10,35,80}). The signal
Y corresponds to X right-shifted by 10 time steps without the middle event.
The color intensity given by W (i, j) increases as the associated cost of the
minimal path from the origin to a given point (%, j) increases. Warping and
phase shifting is given by the amount of horizontal and vertical movements
(here 2 x 10). Missing event cost (here 100) occurs when an event in one
stream has no corresponding event in the other stream (at (35, 45)). Thus, in
this example DTW(X,Y) = 120.

before DTW can return the final cost, which precludes it from
on-line learning as events are occurring. Finally, the complex-
ity of DTW is O(L?) = O(T? f?), which is computationally
expensive for any fast sampling real-time system (i.e., when
f is large). In short, DTW lacks the desired properties for
real-time on-line learning algorithms.

D. Squared Timing Error

In this paper, we propose a new perspective on the fore-
casting problem: instead of examining the output error at
every time step, we suggest focusing on the prediction’s
timing error for each event. Our objective is to develop a
new error cost function that will help predict event timings
while maintaining Properties 1-5. Therefore, it must also be
more informative of the different types of timing errors such
as phase-shift, warping, or missing events (Properties 1-3)
than SSE. Moreover, unlike DTW, the cost function should be
differentiable (Property 4) and be computable on-line in real-
time (Property 5) so that an on-line optimization algorithm
can learn from each observed event as it occurs.

Let C'x and Cy be the number of events in signal X and
Y respectively. From now on, we will denote a binary time
series X = (tx1, tx,z2,..., tx,cx) as a strictly increasing
sequence of times at which the events are occurring in X. That
is, tx,; is the time of the i event in X such that Ty, = L.

1) Minimum Squared Timing error: We propose that the
cost function of two binary signals X and Y be defined as the
sum of the squared timing errors for pairs of event in X to
event in Y that minimizes that sum while pairing every event;
we will call this dynamic squared timing error (DSTE). This is
similar to DTW, but instead of the path being along time steps,
it is along events, and the cost of the path is determined by
the squared timing difference of the matching events. We can
define a (Cx +1) by (Cy +1) matrix Wsrg where each entry

Fig. 3. Example of DSTE computations for the same signals X and Y from
Fig. 2. In (a), it shows the individual costs dstg(-) of each possible pairing
of an event in X to an event in Y. In (b), it shows the cumulative minimal
cost Wgrg for the path from (0,0) to (Cx,Cy). There is a missing event
in Y, so DSTE pairs the first and second events of X to the first event of
Y, while it pairs the last event of each signal together. The optimal path is
P ={(0,0),(1,1),(2,1),(3,2)} yielding DSTE(X,Y) = 425.

p = (i, j) corresponds to a pair (tx ;,ty,;). A monotonic path
P = (po,p1,--.,pK) is a sequence of grid points traversing
the grid such that py = (0,0) and px = (Cx,Cy) as shown
in Fig. 3. Then, the problem is to find the path that minimizes
the matching cost which is defined to be the squared timing
error. This is given by

K
= min stTE(pk) , ®)

DSTE(X,Y)

where
(tx,;— ty,j)2 (6)

is the cost of matching two events together, i.e., traversing a
particular grid point. In DSTE, the path can only go up (1),
diagonally ("), or right (—) by one grid point at a time,
guaranteeing that every event is matched to at least one event
in the other stream. Then the matrix Wgrg(4, j) of the minimal
matching cost from (0, 0) to (4,) is given by

dste(i,J) =

WSTE(i - 17j)7
Wsre(i,j — 1),
Wsre(i— 1,7 —1)

WSTE(i,j) = min + 5STE(i;j) (7)

where
dste(i, 0) — 1) (txq—tr)’}, (8
Sste(0,j) = max {(t, — tv,;)% (tL — tv,;)*}, (9

t1 and ty, are the times of the first and last time steps respec-
tively, WSTE(O, 0) =0, and DSTE(X, Y) = WSTE(OX, Cy)
This 0-based row and column ensures that if one signal has
no event, then the events in the other signal are each binded to
the furthest boundary to maintain monotonicity. If one event
was to appear in the other signal at the furthest end, then it
would be the new match, decreasing the error.

The difference with SSE is trivial: DSTE works on tx ;
while SSE works on z;. There are also two significant differ-
ences with DTW. First, the amount of shift needed to realign
any event (the timing error) is squared in DSTE rather than
linear. Second, extra events cost no more than the squared
time distance to their nearest match in the other stream, as

= max {(txyi

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 5

opposed to having a high fixed cost, as we defined in Eq. (4)
for DTW. This implies that there could be a DSTE cost for
extra or missing events, even if two streams have the same
number of events (i.e., when the path is not purely diagonal).

Clearly, DSTE, as defined by Eqs. (5)—(9), increases mono-
tonically as events from two identical signals begin to differ by
some local or global time-shift or time-warping (Properties 1
and 2). However, this monotonicity has a limited range. As
soon as events from one stream are approaching different
events from other streams, the total cost may begin to oscillate
as events get linked differently. Therefore, one cannot prove
Properties 1 and 2 for the general case where the order of all
events (in the mix of both signals) start changing under time
shift or warping. We argue in Section III that this range is
acceptable for on-line learning. It is also easy to show that
adding events to the signal that has the highest number of
events (or similarly removing events from the signal that has
the least) would increase the total cost (Property 3) since every
event must be paired at least once.

Finally, since DSTE cost depends solely on d(-)stg and
has no warping penalties (unlike DTW’s +1 in Eq. (3)),
the result of its evaluation is differentiable with respect to
the temporal error (Property 4) provided that the function
predicting the events’ time of occurrences is differentiable too.
Although it requires the signals to be fully observed, DSTE’s
complexity is only O(CxCy), which is much lower than
DTW with O(T?f?), and possibly SSE with O(T f) provided
that CxCy < T'f.

2) Nearest Match Squared Timing Error: To further im-
prove the on-line usability (Property 5) of DSTE, we propose
an approximation to it when considering real-time learning.
Simply take each event in one stream, find its nearest match
(the event with the least amount of squared timing difference)
in the other stream, and cumulate their squared distances.
Proceed similarly from the other stream. This local STE (or
LSTE) can thus be defined as

LSTE(X,Y) min {(tx; —t
Z _min {(tx, v.i)’}
+lz min {(ty; —tx4)*}, (10)
5 = i=1..Cx Y,j X,)
with
LSTE(X, () = Zmax{txl—tl (tx:—tr)?} (11)

if one of the signals is empty (as in Egs. (8)-(9)).

An example of LSTE (as defined by Egs. (10)—(11)) can be
calculated from Fig. 3. The minimum of every row in Jsrg is
100; the minimum of every column is 100, 225, and 100. So
LSTE = %(100 +100) + %(100 + 225+ 100) = 312.5.

We will show that LSTE is a good approximation of
DSTE by showing that %DSTE < LSTE < DSTE. DSTE
has at least max{Cx,Cy} costs to be added while LSTE
has Cx + Cy terms. Without loss of generality, let C'x >
Cy. Then the Cx costs in the first summation of LSTE
in Eq. (10) are the smallest values of each column in

the dsyg matrix. But DSTE has to go through every col-
umn, therefore, ZZC:XI min;—1, o, {(tx; —ty;)?} < DSTE.
Similarly, the remaining Cy (< Cx) terms in the sec-
ond LSTE summation are the smallest of each row, thus
S ming—y . oy {(ty,j — tx,)?} < DSTE. But each LSTE
summation is multiplied by 1/2, proving that LSTE(X,Y) <
DSTE(X,Y). Now, LSTE has exactly Cx 4+ Cy terms, which
must form a connected path on the grid points in Jdsrg
from (1,1) to (Cx,Cy) because of the monotonicity of
time indices. But DSTE is the shortest such path. Hence,
it must be that $DSTE(X,Y) < LSTE(X,Y). Therefore,
iDSTE(X,Y) < LSTE(X,Y) < DSTE. The experiments
provided in Section III will further demonstrate that LSTE is
a good approximation of DSTE respecting Properties 1-3 for
a similar range of timing differences.

Finally, the LSTE solves the DSTE on-line issue (Prop-
erty 5). Indeed, it is built such that it computes the squared
timing error as if each event was supposed to be aligned with
its closest match in the other signal. As opposed to DSTE
based on the global optimal matching, LSTE does not require
a window larger than two events from each stream; hence, the
memory requirement is independent of the number of events.

III. EXPERIMENTS AND RESULTS

In Section III-A and III-B, we first compare the performance
of the cost functions against Properties 1-3 to find which one
is best at conveying timing error. To do this, let us assume
that X is the target signal to learn, and Y is the prediction
of a learning algorithm. To evaluate the monotonicity of the
cost functions, different signals Y were artificially generated
from target signal X using increasing level of a particular
type of timing error. We evaluated five different types of
noise: global phase shift, event-wise phase shift (temporal
jerk), global (symmetric) time warping, local (asymmetric)
time warping (or tempo variability), and missing (or failure
to observe) events. In Section III-A, X's are synthetic binary
time series, while in Section III-B, X's are coming from three
sets of real-world binary time series. Finally, in Section III-C,
we demonstrate Properties 4-5 by first developing an LSTE
gradient descent algorithm for a simplified recurrent neural
network, and then, by comparing its performance to SSE and
logit gradient descent when learning on-line real-world binary
time series using the same network architecture.

A. Experiments on Synthetic Data

In this first experiment, we evaluate the cost function prop-
erties for signals X generated from an approximated Poisson
process. Synthetic binary time series X were generated as
bit strings of fixed length, where 1 denotes the presence of
an event, and O denotes its absence. For each experiment,
N = 100 signals were generated using an almost geometric
distribution for the interevent intervals. That is, at every time
step a Bernoulli pseudo-random number generator produces
an event with the probability A, where A represents the event
rate in the signal. The experiments were replicated for three
different values of A € {0.02,0.10,0.20}. In any signal (X or
Y’), when two consecutive time steps contain an event in the

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 6

generated signal, the second event is deleted to guarantee an
event-free time step between each event. Similarly, the first and
last time steps are always 0. Each signal evaluated is L = 1000
time steps long. These N samples represent arbitrary signals
that could be partly predicted only given appropriate inputs.
In these experiments, we are only interested in evaluating how
each cost function behaves with respect to the size of the
timing error produces by a hypothetical learning algorithm.
To do that, we artificially inserted specific types and amount
of temporal noise in a copy Y of a target signal X, where Y
represents the imperfect prediction of such learning algorithm.

1) Global Phase Shift: To evaluate how each cost function
behaves with respect to global phase shift error, we gener-
ated N random signals of length 2L as described above.
Let S = (0,s2,83,...,821,—1,0) be one of these randomly
generated signals. Then let the signal X be defined as the
first half of S such that X = (0,s2,...,85-1,0). Then
for a given shift of size 7 € {0,1,...,200} time steps,
Y, = (0,8r42,8743,..,SL+r—1,0). Constructing signals X
and Y. this way ensures that the number or events within the
visible signal window remains almost constant as the size of
the phase-shift increases. Thus, time shifting remains the main
variable in this experiment. Global phase shifting is symmetric
for all cost functions, so a single direction is sufficient.

2) Local Phase Shift: To evaluate how each cost function
behaves with respect to event-wise phase shift (or temporal
noise), we generated /N random signals of length L as before,
to which we added an increasing amount of Gaussian noise
to the timing of each event. Given a random signal S, the
signal X is generated by zeroing the first and last max{3c}
time steps of S so that the noise is unlikely to throw an event
outside the signal window. Then, for a given noise variance
o €{0,1,...,20}, the signal Y, is created as follows: First,
extract the timing ¢x ; of each event from X. Then, the new
timings for those events is given by ty, ; = tx; + &, ; where
&ri ~ N(0,0%). Any event ty, ; ¢ (1,L) is discarded from
Y,. Thus, the new signal Y, is made of 1s for the time steps
ty, i and O everywhere else. Note that some event can collide,
affecting slightly the number of events between signals, but the
amount of event-wise phase shift remains the main variable.

3) Global (Symmetric) Time Warping: To evaluate how
each cost function behaves with respect to time expansion (or
compression), we generated N random signals of length L as
before. Given a random signal, S, the signal X is generated
by zeroing the first and last quarter of S so that the signal
can be expanded from the center by up to a factor of 2
without throwing events outside the signal window. The signal
is expanded about the center point (¢ = L/2) by an expansion
factor w € {1.00,1.05,...,2.00}. In this range, every event
from the original signal X remains in the time window and
thus, ensures warping is the main variable in this experiment.
Thus, for an event {x; and an expansion factor w, the new
timing of the event is given by ty, ; = (tx;— L/2)-w+L/2.
Note that compression would simply be the inverse (taking a
complete signal S and compressing it around c).

4) Local (Asymmetric) Time Warping: Another way time
warping can be applied is by having some compression, and
some expansion without significantly changing the overall

Normalized Error

Il | i
15 20 25 30 35 40 45 50
(a) Global Shift 7 (in timesteps)

S
_
[S)

Normalized Error

Normalized Error

I
1.7 1.8 1.9 2

()] o :

I
1 1.1 1.2 1.3 14 1.5 1.6
(c) Expansion Factor w (symmetric)

Normalized Error

| I I I I I I
0 005 01 015 02 025 03 035 04 045 0.5
(d) Compression Factor v (asymmetric, left side)

Normalized Error

Il
0 5 10 15 20 25 30 35 40 45 50

(e) Number m of Missing Events

Fig. 4. Results for all 5 experiments on 100 synthetic signals with event
rate A = 0.1. Each curve is the average cost divided by the average cost
maximum value. (a) Error with respect to the amount 7 of global shift added
to the original signals. (b) Error with respect to the amount of local jitter o
added to the original signals. (c) Error with respect to the amount of symmetric
expansion w added to the original signal. (d) Error with respect to the amount
of asymmetric compression (warping) v added to the original signals. (¢) Error
with respect to the number m of events removed from the original signals.
While SSE conveys very little information about the amount of error, DTW
and STEs are quite monotonic and increasing on average. Moreover, LSTE
is an excellent approximation of DSTE.

signal length. Again, we generated N samples of length L.
However, now, for each signal X = S, we used the center
point ¢ as an anchor point that moves to the left to compress
the left part of the signal while expanding the right part. For
an event tx; on the left side of ¢ and a compression ratio
v € {0.00,0.05,...,0.50}, the new timing of the event is
given by ty, ; = tx; - (1 —v). For an event on the right side,
it is given by tYwi = L/2 . (1 — I/) + (tX7i — L/2) . (1 + V).
Local warping, as opposed to global warping, does not affect
the signal overall event rate (but it may fuse few events as in
the local time shift experiment).

5) Missing (or Extra) Events: Finally, to evaluate how the
cost function behaves with respect to missing (or extra) events,
we generated IV samples of length L. The signal X = S is
always the initial randomly generated signal. Signal Y, is
created by removing one, uniformly randomly selected event,
from Y,,,_; such that Yo = X and Yy, = Vi1 \ {tv,,_, rnd}-
Thus, the difference between X and Y,,, is always the absence
of some events in Y,,, with respect to X. If there are no more
events in Y,,,, then Y,,,4; = Y,,,. Again, by symmetry, the cost
reports differences in the number of events, not only adding
or only removing events.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 7

6) Results: Results for all five experiments with A = 0.10
are shown in Fig. 4; the results for A = 0.02 and A = 0.20
are similar. There are three main elements visible in these
figures. First, as mentioned before, the SSE does not convey
any information about the magnitude of the timing error.
The SSE error is either 0, or close to 100% of its maximal
value, except when removing events (Fig. 4(e)). Second, all
cost functions except SSE are monotonically increasing on
average as we increase the temporal error magnitude (noise
parameter level). While DTW can support more global shift
than DSTE and LSTE before reaching a plateau (Fig. 4(a)),
DSTE and LSTE are better than DTW at reporting local shift
(Fig. 4(b)). Third, the results show that the LSTE, which can
be computed on-line using only the last and next event of
both streams, is a good approximation of the optimal DSTE.
Finally, it is also important to note the memory and time
requirements of DTW which are in the order of O(L?). In
practice, DTW took approximately 60 times longer to compute
than the three other cost functions in this experiment and that
factor should increase with L. Overall, LSTE only requires
a constant amount of memory and provides all the required
properties for on-line real-time learning systems.

B. Experiments on Real Data

Although DSTE and LSTE cost functions seem to behave
well with Poisson distributed events, in many situations of
interest, the events are unlikely to follow this distribution.
For example, notes onsets in a musical piece are usually not
Poisson distributed. A note is more likely to fall on beats, half-
beats, or quarter-beats, than anywhere else. Even timing error
could be due to tempo variation, missing a note, or a slight
deviation in its timing. Therefore, in this section, we run the
same set of experiments as in section III-A, but on real-world
time series from normal heartbeats, financial stock prices,
and musical pieces, to ensure that DSTE and LSTE are still
well-behaved. In general, for the global shift experiment, the
original signals were expanded by max(7) zeros on each side
to allow phase shift 7 without losing any events. For local shift,
they were expanded with max(30) zeros on each side for the
same reason. For the global (symmetric warping), the signals
were expanded with L /2 zeros on each side to allow expansion
without losing events. In the missing events experiment, the
maximum number of potentially missing events was related to
the database maximum event rate. The maximum values for
each of the five experiment parameters are in Table I.

TABLE I
MAXIMUM PARAMETERS VALUES FOR EACH DATASET.

Experiment’s Parameter Synthetic Heart Finance = Music
(a) Global Shift (1) 200 20 50 50
(b) Standard Deviation (o) 20 20 20 20

(c) Expansion Factor (w) 2.00 2.00 2.00 2.00
(d) Compression Ratio () 0.50 0.50 0.50 0.50
(e) Missing Events (m) 50 100 30 30

1) Heart Arrhythmia: Detection of heartbeat irregularity is
essential in detecting arrhythmia. To do that, a good algorithm
should be able to detect missing or extra beats as well as

Normalized Error

Normalized Error

(b) Jitter Standard Deviation ¢ (in timesteps)

Normalized Error

I
1.7 1.8 1.9 2

I I
1 1.1 1.2 1.3 14 1.5 1.6
(c) Expansion Factor w (symmetric)

Normalized Error

I I I I I I I
0 005 01 015 02 025 03 035 04 045 05
(d) Compression Factor v (asymmetric, left side)

Normalized Error

0 10 20 30 40 50 60 70 80 90 100
(e) Number m of Missing Events

Fig. 5. Results for all five experiments on ten normal ECGs. Same format
as in Fig. 4. Panel (a) shows that DSTE and LSTE are mostly cycle-invariant
on this periodic dataset. Panels (c)-(e) results are similar to Fig. 4

time-shifted beats [20]. Therefore in this section, we run the
same five experiments as in Section III-A on ECG digital
records selected from the MIT-BIH Normal Sinus Rhythm
Database (nsrdb) located on the Physionet server [21]. Each
record was downloaded as a MAT file. The length of each
ECG record is 60 seconds with 7680 samples, and the first
channel of the file was imported into Matlab. Using Matlab’s
findpeaks function to find peaks with at least 0.5 mV or
higher, we identify the R peaks as heartbeats. We excluded any
record where the R peak did not cross the minimum height to
ensure that the findpeaks function could perform accurately.
A total of ten records® out of 18 were analyzed. The normal
database had been downsampled 10-fold to 768 because of the
computational time and memory requirements for DTW.

The results for all five experiments on the heartbeat data are
shown in Fig. 5. There are three main elements visible in each
of the subfigures: First, SSE normalized error is either O or
close to 1, as we saw in Section III-A, except when removing
events (Fig. 5(e)); Second, the results show that LSTE is a
good approximation of the optimal DSTE; Lastly, the striking
difference between the results on the synthetic and heartbeat
data is the monotonicity, which is not always present in the
heartbeat results.

In the global shift experiment, DTW is accurately reporting
the amount of global shift (Fig. 5(a)). But, since heartbeats are
almost periodic, DSTE and LSTE are only able to report phase

2The selected records were 16265m, 16272m, 16273m, 16420m, 16483m,
16539m, 16786m, 17052m, 17453m, and 18184m.

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 8

shift from within the current cycle. This is very reasonable for
on-line periodic events. When introducing event-wise jitters,
DSTE and LSTE appear more monotonic on average than
DTW (Fig. 5(b)).

To better evaluate the monotonicity of each cost function
we computed a simple monotonicity index for each signal
X of each experiment by summing every decrease along the
experiment parameter (7, o, w, or v), and dividing it by the
averaged curve normalization factor (as used in Figs. 4-6).
A negative value indicates that the cost function decreases
when temporal noise is injected. An index near zero indicates
that the cost function is almost monotonically increasing
as temporal noise increases. As shown in Table II, DSTE
outperforms DTW in each type of temporal noise (lower
negative magnitude). Overall, LSTE provides the best set of
properties for on-line real-time learning systems, particularly
with its ability to be invariant to full cycle phase shift.

TABLE I
MONOTONICITY INDEX (MORE NEGATIVE IS WORST)
Dataset

Experiment Cost Synthetic Heart Finance Music
(a) Global DTW -094+0.5 +0.0+£0.0 +0.0£0.0 +0.0£0.0

Shift DSTE -0.240.1 -124+02 -0.0£0.0 -0.0£0.0
(b) Local DTW -2440.6 -1.6£04 -44+12 -7.0£2.1

Shift DSTE -0.8+£03 -1.1£0.2 -1.5£0.7 -2.0£0.6
(c) Symmetric DTW +0.0£0.0 +0.0£0.0 +0.0£0.0 -0.0£0.2

Warping DSTE +0.0+0.0 +0.0+£0.0 +0.0£0.0 +0.0£0.0
(d) Asymmetric DTW -0.3+£0.2 4+0.0£0.0 -0.5£0.7 -0.1£0.2

Warping DSTE -0.3£0.2 -0.0%0.1 -0.240.1 -0.04+0.0

2) Finance: In finance, predicting when a stock price will
cross some threshold is often desirable. Closing prices of all
NASDAQ-100 companies were selected, and the historical
data from 1 April 2013 to 31 March 2014 (253 records per
company) were downloaded in CSV format from [22]. For
each stock, we created a binary time series using a 14-day
moving average of closing price p and threshold levels of
w + 0.70, where o is the moving 14-day sample standard
deviation. An event, z; = 1, was generated at every time
step ¢t where the stock price was crossing the threshold from
below; otherwise, x; = 0.

Results are showed in Fig. 6. Again, SSE performance is
almost constant independently of the amount of temporal noise
injected, except on the missing event experiments (Fig. 6).
Moreover, the DTW performance seems less monotonic than
DSTE and LSTE as temporal jitter is added (Fig. 6(b)) and
confirmed by Table II, Panel (b). Overall, LSTE and DSTE
remain the most well-behaved cost functions.

3) Music: The experiments were performed on 100 Bach
Chorales from the UCI Machine Learning Repository [23].
Music is a domain where events (notes) are highly non-
Poisson and in which timing is important. The LISP data was
reformatted for Matlab. Each choral consists of approximately
eight bars using notes from C4 to G5. Notes onsets were
extracted and their time indices were computed assuming
sampling at 1/16 of a beat so that all pieces were centered in a
500 time step long signal. The error cost between two versions
of a piece (with or without timing noise) was considered to
be the sum of the error cost for each note signal. In this

—— SSE |g®
—— DTW
& DSTE
|-o- LSTE

jnsd |

Normalized Error

Il
10 15 20 25 30 35 40 45 50
(a) Global Shift 7 (in timesteps)

<
o

Normalized Error

Normalized Error

n I
1 1.1 1.2 1.3 14 1.5 1.6
(c) Expansion Factor w (symmetric)

I
1.7 1.8 1.9 2

Normalized Error

| I I I I I I
01 015 02 025 03 035 04 045 05
(d) Compression Factor v (asymmetric, left side)

)
0 0.05

Normalized Error

0 2 4 6 8§ 10 12 14 16 18 20 22 24 26 28 30
(e) Number m of Missing Events

Fig. 6. Results for all five experiments on all NASDAQ-100 stocks from
1 April 2013 to 31 March 2014. Same format as in Fig. 4. DTW shows some
issues on local shift (jitter), in panel (b), as it does in Fig. 5.

experiment, all cost functions are well-behaved on average,
except SSE on global shift and DTW on jitter. The results are
very similar to finance (Fig. 6) except that SSE on global shift
shows small drops on each beat. Analysis of individual pieces
also highlighted high non-monotonicity for DTW on jitter (see
Table II, last column, panel (b)).

4) Summary: In short, SSE does not report the amount of
timing error (Properties 1-2), while DTW does not always
increase monotonically as the amount of temporal error in-
creases (Property 1). Furthermore, DTW is computationally
expensive, cannot be used to learn from temporal error on-line
(Property 5), and is not differentiable (Property 4). In contrast,
we showed that DSTE, and its on-line approximation, LSTE,
are much better at reporting the amount of temporal noise. In
the next section, we will show how to differentiate LSTE and
show it can outperform SSE in on-line learning (the same can
be applied to DSTE in batch learning).

C. Learning on Real Data

In order to compare LSTE’s true potential as an on-line
prediction learning cost function, we compare it to SSE (and
its preferred variation for binary values, the logit loss-function)
using a simplified recurrent neural network architecture for
which we could derive a gradient for LSTE.

1) LSTE gradient descent: In this section, let X =
(tx1, tx2,--., tx,cx) be the target binary time series and Y’
be the prediction time series represented as strictly increasing
sequences of times at which the events are occurring. Let

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 9

Fig. 7. The LSTE events can be categorized into four groups: A, B, C, D.
An event can be observed (X) or predicted (Y'), and is mapped to its closest
neighbor (in red) in the other stream, which can either come before or after.
The rectangles in Z represent the window of input signals (in Z) observed
for a given event (in X) or prediction (in Y").

Z = (4,%,...,21) with Z; = (#1,4,...,2n,) be the exoge-
nous multivariate (/NV-dimensional) input time series which the
model can observe to make event predictions.

Inspired by the time-adaptive drift-diffusion model of an-
imal interval timing [14], [15], [16], we define a simple
recurrent neural network for which we can define an on-line
gradient for LSTE or apply a standard on-line SSE gradient
descent algorithm.

Let ¢, = th:tk,ﬁ-l Wy 2n,+ be the n® evidence accu-
mulator for the upcoming event, where ¢ € [t;_1,t;], and
tr—1 and t; are the last and next observed event from any
stream (tp—1 < t, € X UY, as defined by event time sets)
respectivell\(r. Let us say that an event is predicted whenever
O, = Y ¢ reaches some positive threshold (say 1,
without loss of generality). If w,, is exactly the inverse of the
accumulation of stimulus z; on the time interval [t;_1 +1,],
and both are external events (tx_1,tx € Y), then ®; should
reach 1 and predict an event at exactly the right time step. One
may argue that if there is no input just before the event, then
the prediction will be early, but this can be solved by adding
a bias input zp ¢ = 1 for all ¢. Note that this is not a unique

solution. In fact, let a,, ; = ¢p /Wy and @ = (a1, ..., aNL)s
then any @ = (w,...,wy) such that w'a; = 1 is a valid
solution. Let the prediction system y; = f (2}, Zi—1,...; W) be

such a system. We will show that whenever an event occurs,
we can compute an approximate gradient of LSTE for the
current pairing at the point of observation with respect to the
weights @ such that minimizing LSTE can be turned into a
standard gradient descent algorithm for this system.

As shown in Fig. 7, there are four possible cases when
correcting an event, each leading to a slightly different gradi-
ent, depending on the temporal window of input over Z that
generated the accumulation present in ¢, ;, at the time ¢y
of the event. Let t; be the k™ event of some group (with
to being the last event of the previous group) and t* be
its corresponding target under the LSTE. That is, ¢; is an
event iterated by one of the LSTE’s sums in Eq. (10), and
t* is its corresponding event returned by the min function.
The input of f for the evaluation of the gradient is therefore
(Zo_141,- -+, 21,)- Thus, we need to find the gradient of the
LSTE term with respect to @ when ® is evaluated at the
end of this interval. To do that, we will project the current
weight vector «j on the hyperplane of solutions for the equation

~(xV(3,.20.5))

ZNt

Fig. 8. The LSTE prediction system seen as a special LSTM network.

\i* T @y, =1 where

not applicable, if ¢, = t* (no error);

\ = %a if t), <t* and t; € Y (group A);
B W, if tp > t* and t; € Y (group D);
L, if t, € X (groups B and C).

(12)
When ¢, is a positive prediction in Y (groups A and D), then
A is the ratio between the current length of the interval leading
to the prediction ¢, by f, and the target length of the interval
leading up to event t*; otherwise (groups B and C), A = 1.
The solution w* closest to w is given by W* = W — Addy,
where d = (\w* T d@;, — 1)/||Ad@y,||3 . We can then estimate a
gradient Aw = o —wW* = Add,, resulting in the learning rule

(@ Ty, —1/))
T
k

W W — AW = 0 — «
to be applied anytime a prediction or an event occurs, and
where 0 < o < 1 is a small learning rate. To guarantee that the
weights are pushed enough for ®; to reach threshold on time,
rules B and C use a slightly modified version of d subtracting
(2f)~2 from the denominator.

Given Eq. (13), it is also straightforward to devise a batch
learning algorithm for DSTE. First compute DSTE, then
compute the gradient estimate A for each cost term selected
by DSTE (each dsrg grid point), apply the updates, and repeat
until convergence.

2) SSE and logit gradient descent: We can rewrite the
above model as a special instance of a long short-term memory
network (LSTM) [24] with fewer connections as shown in
Fig. 8. Each input z; is connected to a linear recurrent unit
(the LSTM memory cell) with a fixed weight of 1. Reusing
the time steps notation X = (z1,22,...,21) for X and Y,
the recurrence weight is determined by the output of another
unit (the LSTM forget gate) which is O whenever z;_; =1
or y;—1 > .5 and is 1 otherwise. The memory cells are then
connected to the output unit through their respective weight
w;. The output unit computes the weighted sum and processes
it through a logistic sigmoid function f(net) = 1/(1+e™"").
This output function will allow the network to learn to output
values near O and 1 and for the cost function (SSE at each
time step) to be differentiable with respect to the network
weights. An output y; = f(w'a;) will be considered an
event prediction if 3, > .5. This is the same architecture as
above with the same degrees of freedom, except for the soft

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 10

threshold at the output. As an LSTM, the network is trained
using gradient descent on the output squared error (y; — x¢)?
applied at each time step (SSE) with respect to each weight
producing the learning rule

W 0 — oy, —a) f(0 @) (1 — f(07a))d,. (14)

The output of f(-) can also be interpreted as the probability
y: = p(xy = 1| @;) of an event at time step ¢, and in such case,
the negative log likelihood (or cross-entropy) is considered the
preferable cost function for such regression (called the logit
loss function). We will also test this learning rule which has
the following gradient descent update rule

u‘)’(—u‘i—a(yt —xt)&’t. (15)

Note that these two learning rules, unlike the previous one,
applies one correction at every time step instead of at every
event or prediction.

3) Datasets: The three datasets from Section III-B are used
with the following adaptations. For the heartbeat dataset, the
input of the prediction system is merely a bias. For finance,
stocks are grouped into 11 categories labeled by NASDAQ.
The input consists of a bias, whether or not each stock of
the category is above its moving average, and whether or not
each stock is below its moving average. The outputs to predict
are, for each stock in the category, whether or not the stock
price crosses the threshold, as in the previous section. Finally,
for music, the binary time series are not centered in a longer
stream. Instead, they are presented as is but repeated five times
in a row to allow the system to learn the piece on-line from
hearing it multiple times. The inputs are the bias, whether or
not each note is heard, and whether or not each note is not
heard, for a total of 41 inputs. Similarly, the system predicts
both notes onset and offset for a total of 40 outputs.

4) Method: For each signal, such as a musical piece or a
group of stocks, the weights for ten networks are initialized
randomly using a A/(0,+/N) distribution. Each network is
then copied, for each algorithm and learning rate («) pair
with « € {0.5,0.1,0.05,0.01,0.005,0.001}. The first 60%
of the signal is used for training. The next 20% of the signal
is used for validation to determine the best learning rate for
each algorithm and task pair using the algorithm cost function
(Eq. (13) for LSTE, Eq. (14) for SSE, and Eq. (15) for logit).
Finally the last 20% of the signal is used for testing the
performance measure under SSE, DTW, DSTE, and LSTE (the
logit loss function cannot be applied to LSTE predictions since
it requires probabilities while the LSTE network generates
only Os and Is). Since this is on-line learning, the learning
rate & > 0 is constant throughout the whole signal processing.

5) Results: Table III shows the performance of each learn-
ing algorithm (LSTE gradient descent, SSE gradient descent,
and logit gradient descent) as measured under each cost
function discussed in Section II of the paper under each
dataset. Strikingly, except the SSE algorithm’s SSE test per-
formance on finance, the LSTE gradient descent algorithm
outperforms the SSE and logit gradient descent under all these
cost functions. That is, the LSTE gradient descent gets better
LSTE, DSTE, DTW, and SSE performance than the SSE and
logit-based algorithms.

TABLE III
RESULTS OF THE THREE LEARNING ALGORITHMS (LOWER IS BETTER)

Optimizing Cost Function Test Performance

Heart SSE DTW DSTE(x10%) LSTE(x10?%)
LSTE (a=0.500) ~ 14+4 1740E551 285£324 143£162
Logit (a=0.500) 2642 26644379 23794331 1190+165
SSE (a=0.500) 2343 26644379 23794331 1190+165
Finance SSE DTW DSTE(x10%) LSTE(x102)
LSTE (a=0.500) ~ 7£2 136E£49 11£7 6t4

Logit (a=0.001) 943 3844470 26433 13417

SSE (a=0.500) 4+1 183438 53415 2647

Music SSE DTW DSTE(x10%) LSTE(x10?%)
LSTE (a=0.500) ~ 6E2 281148 38E32 21E18

Logit (a=0.500) 39413 2558+1721 6524713 3264357
SSE (a=0.500) 1348 323142456 322543465 1613£1733

X

1 [o} [o} [o} [o} [o} o] o]
. 0.8 o Target
~ 0.6 LSTE Prediction
0.4
0.2
0

0 2 4 6 8 10 12 14
(a) LSTE Gradient Descent on nsrdb-16273m

a
o Target
—— SSE Prediction

AN
4 6 8 10 12 14
(b) SSE Gradient Descent on nsrdb-16272m

X
1N
=

Target
Logit Prediction

Xy
oo o
[CRSE=Ny

[X)

4 6 8 10 12 14
(c) Logit Gradient Descent on nsrdb-16272m

Fig. 9. Best predictions learned on a normal ECGs. Best network trained
predictions on the test portion of (a) LSTE on nsrdb-16273m, (b) SSE on
nsrdb-16272m, and (c) Logit on nsrdb-16272m. While the LSTE trained
network can make predictions at right time steps or in their vicinity (a), even
the best SSE (b) and logit (c) trained networks have purely reactive behavior
attempting to predict events only after they occurred, and not successfully
reaching the event prediction threshold of y; > 0.5.

To get a sense of how LSTE gradient descent can outper-
form SSE gradient under SSE cost, we looked for the best
prediction network based on its the training cost function. For
example, for SSE in the heartbeats dataset, nsrdb-16272m had
the SSE trained network with the lowest SSE test performance.
The resulting prediction signals are plotted on the test portion
of their target signal in Figs. 9—10 for the finance and heartbeat
datasets respectively. As expected, the LSTE gradient descent
is producing predictions at, or in the temporal vicinity, of
target events, sometimes totally missing an event (Figs. 9-
10, panel (a)). In contrast, the SSE and logit gradient descent
show purely reactive behavior. That is, following an event,
their weights are highly increased, inducing a response on the
next time steps. But then, the absence of matching events pulls
back down the weights, reducing the network output, despites
the increasing values in the accumulators @;. (Remember that
the event stream y; is not part of the networks input stream
Z;.) This seems less of a problem for the logit gradient descent
compared to the SSE (see Fig. 9, panel (c)) as the cost function
considers y; as a probability of an event p(x; = 1 | @;) at time
step t, but still shows a purely reactive behavior. Therefore, the
LSTE gradient descent algorithm seems to be the most well-
behaved cost function and outperforms standard SSE and logit

SUBMITTED TO IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, APRIL 2017, REV.1 MARCH 2018, REV.2 NOVEMBER 2018 11

l]é r o Target
" 8;? L LSTE Prediction
0 5 10 15 20 25 30 35 40 45 50 55 60
(a) LSTE Gradient Descent on CTRX
1
0.8+ o Target
<041
0.2

0 & & & & & & AN & & & I

0 5 10 15 20 25 30 35 40 45 50 55 60
(b) SSE Gradient Descent on SRCL

1

> 0.6 Logit Prediction
X041
0.2

() ~eseedoo00d0000b00000 & & & & & & L
0 15

0 5 20 25 30 35 40 45 50 55 60
(c) Logit Gradient Descent on SRCL

Fig. 10. Best predictions learned on a NASDAQ-100 stock from 16 January
2014 to 31 March 2014. Best network trained predictions on the test portion
of (a) LSTE on CTRX, (b) SSE on SRCL, and (c) Logit on SRCL. The results
are similar to Fig. 9.

gradient based descent algorithms when learning to predict
binary events.

IV. CONCLUSION

In this paper, we revisit SSE and the reasons for not se-
lecting it as a cost function for binary time-series forecasting,
especially when timing is critical [3]; SSE does not convey
timing error magnitude well. We then showed that while
DTW is a better approach to recognize time series, it is not
suitable for on-line and real-time learning of binary time series
prediction because it needs to know the whole signal, it has
a high O(T?f?) computational cost, and its warping cost is
not differentiable. Inspired by recent animal behavioral models
[14], [15], [16], we developed the dynamic squared timing
error (DSTE) and its on-line approximation, the local squared
timing error (LSTE), to be used when a cost function having
Properties 1-5 is required, such as in robotics [2].

In the first set of experiment, we demonstrated that the
local minimum squared timing error (LSTE) is an excellent
approximation to the dynamic minimum squared timing error
(DSTE) and that both behave better than SSE and DTW
under five types of timing noise in both artificial and real
binary streams of events. We have also shown that unlike
DTW, LSTE is differentiable and can be computed quickly on-
line. In the second set of experiments, we derived an on-line
gradient descent algorithm for LSTE. This algorithm generally
outperformed SSE and the logit gradient descent on the same
network architecture under all cost functions evaluated. That
is, the new LSTE algorithm reached lower SSE and DTW
costs than logit and SSE training itself. Moreover, this new
algorithm can be directly extended to batch or off-line learning
using either LSTE or DSTE. This shows that LSTE has the five
properties outlined in Section II-B and that these properties are
indeed desirable cost function properties for on-line learning
of timing.

Future research should investigate how to generalize LSTE
and DSTE to more complex neural networks as well as how
to extend it to continuous input (or even output) signals.

ACKNOWLEDGMENT

This research was supported by a start-up fund and an
ARP grant from RMC and the Canadian Defence Academy
to Dr. Rivest. The authors also thank Nathan Chalmers for his
contribution in preliminary work and Rick J. Kohar for his
comments on an early draft.

REFERENCES

[1] J. Schmidhuber, “2006: Celebrating 75 years of AI—History and Out-
look: The Next 25 Years,” in 50 Years of AI. Springer, 2007, pp. 29-41.

[2] M. Maniadakis and P. Trahanias, “Temporal cognition: a key ingredient
of intelligent systems,” Frontiers in Neurorobotics, vol. 5, p. 2, 2011.

[3] F. Itakura, “Minimum prediction residual principle applied to speech
recognition,” IEEE Trans. Acoust., Speech, Signal Process., vol. 23,
no. 1, pp. 67-72, 1975.

[4] C.-S.Perng, H. Wang, S. R. Zhang, and D. S. Parker, “Landmarks: a new
model for similarity-based pattern querying in time series databases,” in
Proceedings of the 16th International Conference on Data Engineering.
IEEE, 2000, pp. 33-42.

[5] D. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series,” in AAAI Workshop on Knowledge Discovery
in Databases, 1994, pp. 229-248.

[6] J. A. Ward, P. Lukowicz, and H. W. Gellersen, “Performance metrics
for activity recognition,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 1,
pp. 6:1-6:23, Jan. 2011.

[7] J. Frank, S. Mannor, J. Pineau, and D. Precup, “Time series analysis
using geometric template matching,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 3, pp. 740-754, 2013.

[8] F. Rivest, J. F. Kalaska, and Y. Bengio, “Alternative time representation
in dopamine models,” Journal of Computational Neuroscience, vol. 28,
no. 1, pp. 107-130, 2010.

[9]1 F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning precise
timing with LSTM recurrent networks,” Journal of Machine Learning
Research, vol. 3, pp. 115-143, 2002.

[10] A. L. Blum and R. L. Rivest, “Training a 3-node neutral network is
NP-complete,” Neural Networks, vol. 5, pp. 117-127, 1992.

[11] C. R. Gallistel and J. Gibbon, “Time, rate, and conditioning,” Psychol.
Rev., vol. 107, no. 2, pp. 289-344, 2000.

[12] P. D. Balsam, M. R. Drew, and C. Yang, “Timing at the start of
associative learning,” Learning and Motivation, vol. 33, no. 1, pp. 141-
155, 2002.

[13] E. Balci, C. R. Gallistel, B. D. Allen, K. M. Frank, J. M. Gibson,
and D. Brunner, “Acquisition of peak responding: what is learned?”
Behavioural Processes, vol. 80, no. 1, pp. 67-75, 2009.

[14] F. Rivest and Y. Bengio, “Adaptive drift-diffusion process to learn time
intervals,” 2011, arXiv:1103.2382.

[15] P. Simen, F. Balci, L. de Souza, J. D. Cohen, and P. Holmes, “A model of
interval timing by neural integration,” Journal of Neuroscience, vol. 31,
no. 25, pp. 9238-9253, 2011.

[16] A. Luzardo, E. A. Ludvig, and F. Rivest, “An adaptive drift-diffusion
model of interval timing dynamics,” Behavioural Processes, vol. 95, pp.
90-99, 2013.

[17] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157-166, 1994.

[18] V. L. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics—Doklady, vol. 10, no. 8, pp. 707—
710, 1966.

[19] M. Cuturi and M. Blondel, “Soft-DTW: a differentiable loss function
for time-series,” in Proceedings of the 34th International Conference on
Machine Learning, 2017, pp. 894-903.

[20] L. Citi, E. Brown, and R. Barbieri, “A point process local likelihood
algorithm for robust and automated heart beat detection and correction,”
in Computing in Cardiology, 2011, 2011, pp. 293-296.

[21] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet: Components of a
new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. e215-e220, 2000.

[22] “NASDAQ stock market,” May 2014, www.nasdaq.com.

[23] K. Bache and M. Lichman, “UCI machine learning repository,” 2013.
[Online]. Available: http://archive.ics.uci.edu/ml

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, pp. 1735-1780, 1997.

